University of California, Riverside

UCR Newsroom



Biochemist Goes to Washington


UCR Biochemist Goes to Washington with High-Protein Corn

Daniel Gallie’s findings propose a useful approach to feed the world’s growing population

(September 20, 2005)

Daniel Gallie, professor of biochemistry, will present his research on high-protein corn before a congressional committee in Washington, D.C., Sept. 23.Enlarge

Daniel Gallie, professor of biochemistry, will present his research on high-protein corn before a congressional committee in Washington, D.C., Sept. 23.

RIVERSIDE, Calif. — Corn with twice its usual content of protein and oil and about half its usual carbohydrate content is what Daniel Gallie, professor of biochemistry, will present at a congressional seminar in Washington, D.C., this week.

Because his research holds promise for efficiently feeding high-protein corn to people and livestock all over the world, Gallie has been invited to speak to an audience of congressional staff in the Longworth House Office Building of the U.S. House of Representatives. His 45-minute presentation is scheduled for 10 a.m., Sept. 23.

The National Coalition for Food and Agricultural Research, a broad-based coalition of agricultural producers, science societies and universities, is sponsoring the seminar.

In the United States, the vast majority of corn — nearly 65 percent — is used to feed animals for meat production. Much of the remainder is exported to other countries for feeding animals or made into corn sweeteners or fuel alcohol. Corn, the most widely produced feed grain in the United States, accounts for more than 90 percent of total value and production of feed grains in the country, with around 80 million acres of land planted with corn.

Gallie’s research on doubling the protein content of corn grain adds significant value to the crop, benefiting corn producers. Moreover, his technology nearly doubles corn oil, the most valuable content of corn grain, and significantly increases the grain’s value. Corn is processed also into other food and industrial products such as starch, sweeteners, beverage and industrial alcohol, and fuel ethanol.

“Nearly 800 million people in the world suffer from protein-energy malnutrition, which is a leading cause of death in children in developing countries, many of which already produce corn as a major cereal crop,” said Gallie. “A significant fraction of the world’s population, particularly in developing countries, has no access to meat as a protein source, and has to rely on plant sources such as grain. The new corn we have developed has two embryos in its kernel, which is what doubles the content of protein and oil and reduces the starch content. It could provide a good source of protein for those that depend on grain as their primary source of nutrients.”

Every corn kernel results from a flower on an ear of corn, Gallie explained. Initially the ear produces a pair of flowers for every kernel. But then one of the sister flowers undergoes abortion, resulting in one flower for each kernel. Gallie’s research group has developed technology that essentially rescues the aborted flower, resulting in two kernels that are fused together. “Despite the fusion, the kernels are not bigger,” Gallie said. “It’s basically the same corn, except that it is protein-rich and starch-poor — something that, if applied to sweet corn, would appeal to a large number of weight-conscious people in this country who are interested in low-carb diets and who normally avoid corn in their diets.”

Gallie and his colleagues published their work last year in The Plant Journal. Though their research focused on feed corn, the technology can easily be applied to sweet corn, a sugar-rich mutant strain of regular corn.

The U.S. Department of Agriculture, the National Science Foundation, and the California Agricultural Experiment Station funded the research.

Media interested in covering the event need to contact Brian Hyps at 301-251-0560, ext. 114, or bhyps@aspb.org.

Details of the study:
Flowers in the corn ear develop in pairs but one from each pair aborts before pollination can occur. Because of the role cytokinin, a plant hormone, plays in preventing organ death, Gallie’s research group introduced a gene that enabled production of cytokinin, thus rescuing the flowers. The kernels produced from pairs of flowers fused into a single normal-sized kernel that contained two embryos and a smaller endosperm, the food storage tissue that provides nutrients to the developing embryo. Because the embryo contains the majority of protein and oil, two embryos in the kernel doubles the protein and oil content in corn grain. The nutritional value of the grain improves also because the size of the endosperm, which contains most of the carbohydrates, is reduced.

Brief biography of Daniel Gallie:
Daniel Gallie received his doctoral degree in 1985 from the University of California, Davis. After completing postdoctoral studies at the John Innes Institute in Norwich, England, and at Stanford University, he joined UCR in 1990. During his career, Gallie has investigated the regulation of protein synthesis, the function of heat stress proteins, the control of cell death in plants, the role of plant hormones such as ethylene and cytokinin during plant growth and development, and the function of vitamin C in a plant’s response to adverse environmental conditions. Results from his group have been published in over 100 papers and patents. He is a member of the American Society of Plant Biologists, a professional society devoted to the advancement of the plant sciences.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

More Information 

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Department Information

Media Relations
900 University Avenue
1156 Hinderaker Hall
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Related Links

Footer