University of California, Riverside

UCR Newsroom



Cleaning the Salton Sea


UCR Environmental Scientists Propose Chemical Solution to Cleaning California’s Salton Sea

Using alum and a polymer, researchers improve water quality by ninety percent

(November 3, 2005)

Chris Amrhein, professor of soil and environmental sciences, has a solution for cleaning the Salton Sea.

Chris Amrhein, professor of soil and environmental sciences, has a solution for cleaning the Salton Sea.

RIVERSIDE, Calif. — UC Riverside scientists are able to improve water quality by 90 percent in the rivers flowing into the Salton Sea, the largest lake in California, by using two kinds of water-treatment chemicals that remove phosphorus and silt from the river water.

The researchers investigated the use of alum, a type of salt that has been used to treat phosphorus-rich lakes for decades. They also cleaned water from the rivers flowing into the Salton Sea with polyacrylamide, a new type of polymer used increasingly for reducing sediment loss from agricultural fields.

Results from the study appear in the November/December issue of the Journal of Environmental Quality.

“Removing phosphorus from the inflow reduces algae growth, improves water clarity and decreases the odors common at the lake,” said Christopher Amrhein, professor of soil and environmental sciences and the lead author of the paper. “We found that alum and polyacrylamide were highly effective in removing both dissolved phosphorus and suspended sediment in the river waters entering the lake.”

Both phosphorus — a fertilizer nutrient that occurs both dissolved in the river water and attached to the sediments suspended in the rivers — and silt contribute to algae growth, odors, low dissolved oxygen and fish-kills in the Salton Sea.

A clean-up of the Salton Sea and consequent development of the surrounding region could help meet the needs of California’s growing population, support commercial growth in the neighboring Imperial and Coachella Valleys and achieve high property values in an area that is easily accessible from cities such as Los Angeles, San Diego and Riverside. An improvement of the environmental conditions in the Salton Sea region also could facilitate the region’s development as a water-sports recreational area.

Currently, state and federal agencies are working to develop a comprehensive restoration plan to return the Salton Sea to its former condition as a high-quality aquatic ecosystem and recreation area. One aspect of this restoration plan will be the management and control of nutrient inputs to the lake.

Inflow water into the Salton Sea by way of the Whitewater River, the New River and the Alamo River contains fertilizer nutrients from agricultural runoff and municipal effluent. These nutrients, particularly phosphorus, deteriorate the quality of the lake’s water by encouraging algae growth.

“Water treatment technology and on-farm management of fertilizers appear to be the best approaches for reducing algae blooms in the Salton Sea,” Amrhein said.

Unless measures are taken to clean the Salton Sea, evaporation will result in the sea being too salty for fish, resulting also in the loss of fish-eating birds frequenting an area that is home also to several endangered bird species and visited by millions of waterfowl every year.

Massive fish kills are a common occurrence at the Salton Sea, however, because of low dissolved oxygen, high hydrogen sulfide and ammonia concentrations, high temperatures and an increasing level of salinity.

Due to noxious odors emanating from the Salton Sea, a 32 kilometer-long State Recreation Area on the northeast shore remains under-used.

“The Salton Sea at one time attracted more visitors than Yellowstone National Park,” Amrhein said. “If nothing is done, this sea will shrink, exposing lake sediments that could generate dust and worsen air quality. Fish and fish-eating birds would disappear in 10-30 years, and be replaced perhaps by birds that eat brine shrimp. And the sea would continue to smell, which might even get worse. Doing something to address the Salton Sea’s problems on the other hand could greatly stimulate eco-tourism here and boost the economy of this region.”

L. B. Mason, C. C. Goodson, M. R. Matsumoto and M. A. Anderson of UCR assisted with the study, which was conducted in 2003-2005. The California State Water Resources Control Board and the Salton Sea Authority provided financial support.

Details of the study:
Phosphorus is contributed to the Salton Sea in both colloidal and dissolved forms. Alum and polyacrylamide are commonly used in municipal wastewater treatment to remove phosphorus and solids, and then the sludge is collected and disposed.

Alum, or aluminum sulfate, is the most widely used coagulant in water treatment. It forms solid amorphous aluminum hydroxide in water, which incorporates soluble phosphorus into its structure. The amorphous aluminum hydroxide, or “floc,” combines with the other coagulated suspended solids and settles out.

Polyacrylamide is a synthetic polymer used in soil applications to reduce erosion, promote flocculation (the process by which clays, polymers, or other small charged particles become attached and form a fragile structure, called a floc) and enhance salt removal. Used in wastewater treatment, it enhances coagulation and settling. The polymer acts as a coagulant aid by chemically bridging reactive groups and increasing floc size.

More on the Salton Sea:
Formed in 1905 and located 45 miles southeast of Palm Springs, Calif., the Salton Sea is the largest inland water body in California. Historically, the basin has filled and dried up many times. With a surface area of 96,000 hectares, the sea is 35 miles long by 10-15 miles wide. Its surface is 70 meters below sea level. The sea’s average depth is 9 meters, with maximum depth being 16 meters. Evaporation at the sea is counterbalanced with inflow from the Whitewater River to the north, and the New River and Alamo River to the south. Inflow is predominantly agricultural drainage water; the rest is comprised of municipal effluent and less than 3 percent rainfall.

Environmental issues affecting the Salton Sea include high salinity due to evaporation; a fluctuating water level; poor air quality due to an increase in dust resulting from an exposure of saline sediments; contaminated drainage water (fertilizers, pesticides, industrial waste, pathogens, suspended solids and selenium); bad smell; and annual bird die-offs.
Satellite image of the Salton Sea.

Satellite image of the Salton Sea.

Salton Sea from space.  Arrow points to the sea.

Salton Sea from space. Arrow points to the sea.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

More Information 

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Department Information

Media Relations
900 University Avenue
1156 Hinderaker Hall
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Related Links

Footer