University of California, Riverside

UCR Newsroom



Smart Wireless Networks Studied


UCR Studying Self-Organizing Smart Wireless Networks

UC Riverside engineering professors are researching a wireless computer network that reconfigures itself with every new connection to maximize its effectiveness and reach.

(November 29, 2006)

RIVERSIDE, Calif. — www.ucr.edu — For wireless multihop networks to be used by thousands, the network has to be able to self-organize, which is what University of California, Riverside researchers are developing at the Bourns College of Engineering.

Self organization means that each wireless node is aware of its neighborhood and can make intelligent decisions about whom to communicate with. Multihop means the network allows a single connection to let many other users “hop onto” the network using the most efficient wireless routes. Creating essentially a wireless web of wireless networks is especially useful where traditional hardwired systems are limited in reach, such as in developing countries or in sparsely populated areas.

Computer Science and Engineering faculty members Srikanth Krishnamurthy, Michalis Faloutsos and Neal Young are working to develop a smart wireless network that reconfigures itself with each connection to optimize its quality and effectiveness. The project has received a three-year, $388,000 grant from the National Science Foundation.

Using the third floor of the Engineering II Building at UCR as their test network, they will determine what the realistic footprint of the wireless signal coming from each node is and how to best design the network that will constantly reconfigure itself to maximize the quality of signals between neighboring transmitters and receivers.

“When you see representations of the reach of a wireless signal, they usually show you a circle radiating from the antenna, but with walls, poles and other interfering devices, you rarely have a circular footprint,” said Krishnamurthy, one of the principal investigators. A goal of the research team is to use realistic assumptions and models.

The work will examine emerging physical layer technologies such as the use of smart antennas while facilitating this reconfiguring of neighboring nodes. The investigators will also develop a wireless teaching laboratory at UCR for both graduate and undergraduate students to perform experiments and understand the practical issues that arise with the network’s implementation.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

More Information 

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Department Information

Media Relations
900 University Avenue
1156 Hinderaker Hall
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Related Links

Footer